

Synthesis and Evaluation of 5-HT_{2A} and 5-HT_{2C} Receptor Binding Affinities of Novel Pyrimidine Derivatives

Dániel Bózsing,^{a,*} Ildikó Simonek,^a Gyula Simig,^a Iván Jakóczi,^a István Gacsályi,^b György Lévay,^b Károly Tihanyi^b and Éva Schmidt^b

^aChemical Research Department, EGIS Pharmaceuticals Ltd., PO Box 100, 1475 Budapest, Hungary ^bCNS Pharmacology Department, EGIS Pharmaceuticals Ltd., PO Box 100, 1475 Budapest, Hungary

Received 13 June 2002; accepted 31 July 2002

Abstract—In an effort to find potential anxiolytic and/or antipsychotic agents with selective 5-HT_{2C} affinity a series of new pyrimidine derivatives was prepared and the binding affinities for 5-HT_{2A} and 5-HT_{2C} receptors were determined. © 2002 Elsevier Science Ltd. All rights reserved.

Serotonin (5-hydroxytriptamin, 5-HT) is an important neurotransmitter in the central nervous system.¹ The ongoing study of 5-HT receptors has resulted in the identification of seven classes (5-HT₁-5-HT₇) and several subclasses of the 5-HT receptors.² 5-HT₂ serotonin receptors have significant clinical interest because of their potential involvement in cardiovascular function and certain mental disorders. The 5-HT₂ family of receptors is subdivided into three subtypes: 5-HT_{2A}, 5-HT_{2B} and 5-HT_{2C}. Due to the high degree of sequence homology of the 5-HT₂ receptor subtypes, numerous substrates (methysergide, metergolin, mianserin, ritanserin) display similar affinities to these receptors.^{3,4} A lot of efforts have been made to synthesize compounds displaying outstanding selectivity for one of the 5-HT₂ receptor subtypes over the others. Ketanserin, risperidone and MDL 100907 exhibit selectivity for the 5-HT_{2A} site.^{4,5} The structure of the selective compounds in regard to the 5-HT_{2C}/5-HT_{2B}⁶ and 5-HT_{2C}⁷ receptors are also given in the literature. Here we describe the discovery of a series of new 2,4-diaminopyrimidine compounds exhibiting affinities for the 5-HT_{2A} and 5-HT_{2C} receptors too. Some of the compounds are selective regarding the 5-HT_{2A} or 5-HT_{2C} receptors, respectively.

In binding assays, compound 1a was found to bind both

to 5- $\mathrm{HT_{2C}}$ and 5- $\mathrm{HT_{2A}}$ receptors. Compound 1a contains a 4,6-diamino-2-thiopyrimidine moiety coupled with a *N*-benzylpiperazine unit by ethylene spacer. Binding data shown in Table 1 indicate that neither a longer spacer (1b) nor the introduction of a large lipophilic group into the 5-position of the pyrimidine ring (1c) increased 5- $\mathrm{HT_{2C}}$ and 5- $\mathrm{HT_{2A}}$ receptor affinity. However, 5-benzylpyrimidine derivative 1d displayed substantially higher affinity than compound 1a.

Upon this hit a variety of new, structurally related 2-(piperazinylethylthio)pyrimidines (4–17) was synthesized

Table 1. 5-HT_{2A} and 5-HT_{2C} binding measurements for compounds 1

Compd	Y	n	Inhibition of receptor binding (%) (mol/L)		
			5-HT _{2A}	5-HT _{2C}	
1a 1b	H H	1 2	89 (10 ⁻⁵) 54 (10 ⁻⁵)	77 (10 ⁻⁵) 21 (10 ⁻⁵)	
1c		1	10 (10 ⁻⁵)	32 (10 ⁻⁵)	
1d		1	99 (10 ⁻⁶)	67 (10 ⁻⁶)	

^{*}Corresponding author. Fax: +36-1-265-5613; e-mail: chemistry.rd@

Table 2. Receptor affinities for compounds 4-17 (effect of R¹, R² substituents on affinity and selectivity over 5-HT_{2A})

Compd	\mathbb{R}^1	\mathbb{R}^2	Binding affinity $K_{i\pm}SEM$ (nM)		Selectivity
			5-HT _{2A}	5-HT _{2C}	5-HT _{2C/2A}
4	4-Me	4-OMe	12.5±4.7	300.1±65.2	0.04
5	2-Me	4-OMe	11.5 ± 0.5	16.4 ± 2.3	0.7
6	2-C1	4-OMe	5.7 ± 0.1	10.4 ± 0.4	0.6
7	2-C1	3,4,5-OMe	4.3 ± 0.3	18.3 ± 0.7	0.2
8	2-C1	Ĥ	18.3 ± 2.6	11.9 ± 1.7	1.5
9	2-C1	2-C1	11.8 ± 0.5	8.7 ± 2.2	1.4
10	2-C1	2-OH	22.8 ± 5.4	5.5 ± 1.2	4.2
11	2-CF ₃	Н	61.1 ± 5.4	21.4 ± 4.1	2.9
12	2-CF ₃	2-OMe	47.7 ± 7.0	7.7 ± 0.2	6.2
13	3-CF ₃	2-OMe	60.4 ± 6.2	5.5 ± 0.7	11.0
14	3-CF ₃	3-OMe	44.6 ± 10.3	4.9 ± 0.2	9.1
15	3-CF ₃	2-OEt	69.9 ± 7.7	9.1 ± 0.4	7.7
16	3-CF ₃	2-OCHMe ₂	120.7 ± 15.3	8.6 ± 0.8	14.0
17	$3-\mathrm{CF}_3$	2-OH	93.2 ± 19.3	6.2 ± 1.1	15.0

5-HT_{2A} and 5-HT_{2C} receptor binding affinity was measured as described by Leysen et al.¹² and Pazos et al.¹³ Each compound was tested at 12 concentrations for determining K_i . These values represent mean \pm standard errors of a minimum of two experiments.

possessing benzyl-type substituents at the 5-position of the pyrimidine ring (Table 2). Compounds were prepared by alkylation of 2-mercaptopyrimidines **2**¹⁰ with *N*-benzyl-*N'*-(2-chloroethyl)piperazines **3**⁹ in methyl or ethyl alcohol in the presence of potassium iodide and potassium carbonate⁸ (Scheme 1). All products were characterized by elemental analysis data, ¹H NMR and IR spectroscopy. ¹¹

Compound 4 showed a good affinity for 5-HT_{2A} receptors and weak binding at the 5-HT_{2C} receptors, however, methyl substituent at the 2-position of the piperazine benzyl group (5) led to significant increase in 5-HT_{2C} receptor affinity while 5-HT_{2A} receptor affinity was less affected by this variation. A series of (2-chlorobenzyl)pirerazine derivatives (6–10) was prepared and the substituents of the pyrimidine benzyl group were varied. Methoxy substituted derivatives 6 and 7 were slightly selective for 5-HT_{2A}, however, unsubstituted compound 8 was the first one exhibiting 5-HT_{2C} selectivity. Chloro substituent in the 2-position of the pyrimidine benzyl group (9) produced good affinities with modest 5-HT_{2C} selectivity. 2-Hydroxy derivative 10 was the most selective in this series. Compounds with

Scheme 1. Synthesis of 2-(piperazinylethylthio)pyrimidines (4–17).

(2-trifluoromethylbenzyl)piperazine moiety were also tested and a slightly better selectivity was found for derivative 12. Surprisingly, structural isomer 13 gave even better selectivity which was reduced by moving the methoxy substituent into the 3-position (14). Encouraged by these results a series of (3-trifluoromethylbenzyl)piperazine derivatives was synthesized with various substituents in the 2-position of the pyrimidine benzyl group. Compound 17 was the most potent in this series and has a 15-fold 5-HT_{2C/2A} selectivity. This compound has been selected for further evaluation.

References and Notes

- 1. Blackburn, T. P. In *Advances in Neuropharmacology*; Rose, F. C., ed.; Smith-Gordon and Nishimura. New York, 1993; p 51.
- 2. Hoyer, D.; Clarke, D. E.; Fozard, J. R.; Hartig, P. R.; Martin, G. R.; Mylecharane, E. J.; Saxena, P. R.; Humphrey, P. P. A. *Pharmacol. Rev.* **1994**, *46*, 157.
- 3. Kennett, G. A. Curr. Opin. Invest. Drugs 1993, 2, 317.
- 4. Wainscott, D. B.; Cohen, M. L.; Schenck, K. W.; Adia, J. E.; Nissen, J. S.; Baez, M.; Kursar, J. D.; Lucaites, V. L.; Nelson, D. L. *Mol. Pharmacol.* **1993**, *43*, 419.
- 5. Dudley, M.; Ogden, A.; Carr, A.; Nieduzak, T.; Kehne, J. Soc. Neurosci. 1990, 19, 427.
- 6. Forbes, I. T.; Ham, P.; Booth, D. H.; Martin, R. T.; Thompson, M.; Baxter, G. S.; Blackburn, T. P.; Glen, A.; Kennett, G. A.; Wood, M. D. *J. Med. Chem.* **1995**, *38*, 2524.
- 7. Weinhardt, K. K.; Bonhaus, D. W.; De Souza, A. *Bioorg. Med. Chem. Lett.* **1996**, *6*, 2687.
- 8. Jakóczi, I. WO 9,716,429, 1997, Chem. Abstr., 1997, 127, 34248t
- 9. Navio, J. L. G.; Lorente, A.; Soto, J. L. Heterocycles 1982, 19, 305.
- 10. Ross, S. D.; Bruno, J. J.; Petersen, R. C. J. Am. Chem. Soc. 1963, 85, 3999.

11. Representative data follow for **17** 3HCl: Anal. calcd for $C_{25}H_{29}F_3N_6OS\cdot 3HCl$: C, 47.82, H, 5.14, N, 13.38, Cl, 16.94. Found: C, 47.52, H, 5.19, N, 13.14, Cl, 16.70. ¹H NMR (400 MHz, D₂O) δ 7.90 (d, J=7.7 Hz, 1H), 7.78 (d, J=7.8 Hz, 1H), 7.72 (t, J=7.6 Hz, 1H), 7.24 (dt, J=7.7 Hz, 1.6 Hz, 1H), 7.11 (dd, J=7.7 Hz, 1.6 Hz, 1H), 7.00 (dd, J=8.0 Hz, 0.8 Hz, 1H), 6.94 (dt, J=7.5

Hz, 1.0 Hz, 1H), 4.75 (s, 2H), 4.50 (s, 2H), 3.73 (s, 2H), 3.59 (m, 8H), 3.54 (m, 2H). IR (KBr): 3352, 3178, 1642, 1492 cm⁻¹.

12. Leysen, J. E.; Niemegeers, C. J. E.; Van Nueten, J. M.; Laduron, P. M. *Mol. Pharmacol.* **1981**, *21*, 301.

13. Pazos, A.; Hoyer, D.; Palacoious, J. M. *Eur. J. Pharmacol.* **1985**, *106*, 539.